Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
1.
BMC Med Genomics ; 17(1): 78, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38528593

RESUMO

BACKGROUND: Dihydropyrimidine dehydrogenase (DPD), is the initial and rate-limiting enzyme in the catabolic pathway of pyrimidines. Deleterious variants in the DPYD gene cause DPD deficiency, a rare autosomal recessive disorder. The clinical spectrum of affected individuals is wide ranging from asymptomatic to severely affected patients presenting with intellectual disability, motor retardation, developmental delay and seizures. DPD is also important as the main enzyme in the catabolism of 5-fluorouracil (5-FU) which is extensively used as a chemotherapeutic agent. Even in the absence of clinical symptoms, individuals with either complete or partial DPD deficiency face a high risk of severe and even fatal fluoropyrimidine-associated toxicity. The identification of causative genetic variants in DPYD is therefore gaining increasing attention due to their potential use as predictive markers of fluoropyrimidine toxicity. METHODS: A male infant patient displaying biochemical features of DPD deficiency was investigated by clinical exome sequencing. Bioinformatics tools were used for data analysis and results were confirmed by MLPA and Sanger sequencing. RESULTS: A novel intragenic deletion of 71.2 kb in the DPYD gene was identified in homozygosity. The deletion, DPYD(NM_000110.4):c.850 + 23455_1128 + 8811del, eliminates exons 9 and 10 and may have resulted from a non-homologous end-joining event, as suggested by in silico analysis. CONCLUSIONS: The study expands the spectrum of DPYD variants associated with DPD deficiency. Furthermore, it raises the concern that patients at risk for fluoropyrimidine toxicity due to DPYD deletions could be missed during pre-treatment genetic testing for the currently recommended single nucleotide polymorphisms.


Assuntos
Deficiência da Di-Hidropirimidina Desidrogenase , Lactente , Humanos , Masculino , Deficiência da Di-Hidropirimidina Desidrogenase/genética , Deficiência da Di-Hidropirimidina Desidrogenase/complicações , Deficiência da Di-Hidropirimidina Desidrogenase/tratamento farmacológico , Di-Hidrouracila Desidrogenase (NADP)/genética , Di-Hidrouracila Desidrogenase (NADP)/metabolismo , Antimetabólitos Antineoplásicos/efeitos adversos , Fluoruracila/efeitos adversos , Testes Genéticos
2.
Cancer Med ; 13(6): e7066, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38523525

RESUMO

INTRODUCTION: In April 2019, French authorities mandated dihydropyrimidine dehydrogenase (DPD) screening, specifically testing uracilemia, to mitigate the risk of toxicity associated with fluoropyrimidine-based chemotherapy. However, this subject is still of debate as there is no consensus on a standardized DPD deficiency screening test. We conducted a real-life retrospective study with the aim of assessing the impact of DPD screening on the occurrence of severe toxicity and exploring the potential benefits of complete genotyping using next-generation sequencing. METHODS: All adult patients consecutively treated with 5-fluorouracil (5-FU) or its oral prodrug at six cancer centers between March 2018 and February 2019 were considered for inclusion. Dihydropyrimidine dehydrogenase deficiency screening included gene encoding DPD (DPYD) genotyping using complete genome sequencing and DPD phenotyping (uracilemia or dihydrouracilemia/uracilemia ratio) or both tests. Associations between each DPD screening method and (i) severe (grade ≥3) early toxicity and (ii) fluoropyrimidine dose reduction in the second chemotherapy cycle were evaluated using multivariable logistic regression analysis. Furthermore, we assessed the concordance between DPD genotype and phenotype using Cohen's kappa. RESULTS: A total of 551 patients were included. Most patients were tested for DPD deficiency (86%) including DPYD genotyping only (6%), DPD phenotyping only (8%), or both (72%). Complete DPD deficiency was not detected in the study population. Severe early toxicity events were observed in 73 patients (13%), with two patients (0.30%) presenting grade 5 toxicity. Despite the numerically higher toxicity rate in untested patients, the occurrence of severe toxicity was not significantly associated with the DPD screening method (p = 0.69). Concordance between the DPD genotype and phenotype was weak (Cohen's kappa of 0.14). CONCLUSION: Due to insufficient numbers, our study was not able to demonstrate any added value of DPYD genotyping using complete genome sequencing to prevent 5-FU toxicity. The optimal strategy for DPD screening before fluoropyrimidine-based chemotherapy requires further clinical evaluation.


Assuntos
Deficiência da Di-Hidropirimidina Desidrogenase , Di-Hidrouracila Desidrogenase (NADP) , Adulto , Humanos , Di-Hidrouracila Desidrogenase (NADP)/genética , Deficiência da Di-Hidropirimidina Desidrogenase/diagnóstico , Deficiência da Di-Hidropirimidina Desidrogenase/genética , Deficiência da Di-Hidropirimidina Desidrogenase/complicações , Antimetabólitos Antineoplásicos/uso terapêutico , Estudos Retrospectivos , Capecitabina , Genótipo , Fluoruracila
3.
Clin Pharmacol Ther ; 115(3): 452-456, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38060335

RESUMO

Patients carrying DPYD variant alleles have increased risk of severe toxicity from systemic fluoropyrimidine chemotherapy. There is a paucity of data regarding risk of toxicity from topical 5-fluorouracil (5-FU) treatment in these patients, leading to inconsistent guideline recommendations for pretreatment testing and topical 5-FU dosing. The objective of this retrospective cohort study was to investigate whether DPYD variant allele carriers have increased risk of toxicity from topical 5-FU. Treatment and toxicity data were retrospectively abstracted from the electronic medical records. Genotypes for the five DPYD variants that are associated with increased toxicity from systemic fluoropyrimidine chemotherapy (DPYD*2A, DPYD*13, DPYD p.D949V, DPYD HapB3, and DPYD p.Y186C) were collected from a genetic data repository. Incidence of grade 3+ (primary end point) and 1+ (secondary end point) toxicity was compared between DPYD variant carriers vs. wild-type patients using Fisher's exact tests. The analysis included 201 patients, 7% (14/201) of whom carried a single DPYD variant allele. No patients carried two variant alleles or experienced grade 3+ toxicity. DPYD variant allele carriers did not have a significantly higher risk of grade 1+ toxicity (21.4% vs. 10.2%, odds ratio = 2.40, 95% confidence interval: 0.10-2.53, P = 0.19). Given the low toxicity risk in patients carrying a single DPYD variant allele, there is limited potential clinical benefit of DPYD genetic testing prior to topical 5-FU. However, the risk of severe toxicity in patients with complete DPD deficiency remains unknown and topical 5-FU treatment should be avoided in these patients.


Assuntos
Deficiência da Di-Hidropirimidina Desidrogenase , Di-Hidrouracila Desidrogenase (NADP) , Humanos , Alelos , Estudos Retrospectivos , Di-Hidrouracila Desidrogenase (NADP)/genética , Fluoruracila , Deficiência da Di-Hidropirimidina Desidrogenase/genética , Genótipo
4.
Clin Transl Sci ; 16(12): 2700-2708, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37877594

RESUMO

This study explored the acceptability of a novel pharmacist-led pharmacogenetics (PGx) screening program among patients with cancer and healthcare professionals (HCPs) taking part in a multicenter clinical trial of PGx testing (PACIFIC-PGx ANZCTR:12621000251820). Medical oncologists, oncology pharmacists, and patients with cancer from across four sites (metropolitan/regional), took part in an observational, cross-sectional survey. Participants were recruited from the multicenter trial. Two study-specific surveys were developed to inform implementation strategies for scaled and sustainable translation into routine clinical care: one consisting of 21 questions targeting HCPs and one consisting of 17 questions targeting patients. Responses were collected from 24 HCPs and 288 patients. The 5-to-7-day PGx results turnaround time was acceptable to HCP (100%) and patients (69%). Most HCPs (92%) indicated that it was appropriate for the PGx clinical pharmacist to provide results to patients. Patients reported equal preference for receiving PGx results from a doctor/pharmacist. Patients and HCPs highly rated the pharmacist-led PGx service. HCPs were overall accepting of the program, with the majority (96%) willing to offer PGx testing to their patients beyond the trial. HCPs identified that lack of financial reimbursements (62%) and lack of infrastructure (38%) were the main reasons likely to prevent/slow the implementation of PGx screening program into routine clinical care. Survey data have shown overall acceptability from patients and HCPs participating in the PGx Program. Barriers to implementation of PGx testing in routine care have been identified, providing opportunity to develop targeted implementation strategies for scaled translation into routine practice.


Assuntos
Deficiência da Di-Hidropirimidina Desidrogenase , Neoplasias , Testes Farmacogenômicos , Humanos , Estudos Transversais , Pessoal de Saúde , Aceitação pelo Paciente de Cuidados de Saúde , Farmacogenética , Deficiência da Di-Hidropirimidina Desidrogenase/diagnóstico , Deficiência da Di-Hidropirimidina Desidrogenase/genética
7.
Br J Clin Pharmacol ; 89(8): 2446-2457, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36918744

RESUMO

AIM: Dihydropyrimidine dehydrogenase (DPD) deficiency can be detected by phenotyping (measurement of plasma uracil [U], with U ≥ 16 µg/L defining a partial deficiency) and/or by genotyping (screening for the four most frequent DPYD variants). We aimed to determine the proportion of discrepancies between phenotypic and genotypic approaches and to identify possible explanatory factors. METHODS: Data from patients who underwent both phenotyping and genotyping were retrospectively collected. Complementary genetic analyses (genotyping of the variant c.557A>G and DPYD sequencing) were performed for patients with U ≥ 16 µg/L without any common variants. The characteristics of patients classified according to the congruence of the phenotyping and genotyping approaches were compared (Kruskal-Wallis test), and determinants of U levels were studied in the whole cohort (linear model). RESULTS: Among the 712 included patients, phenotyping and genotyping were discordant for 12.5%, with 63 (8.8%) having U ≥ 16 µg/L in the absence of a common variant. Complementary genetic investigations marginally reduced the percentage of discrepancies to 12.1%: Among the nine additional identified variants, only the c.557A>G variant, carried by three patients, had been previously reported to be associated with DPD deficiency. Liver dysfunction could explain certain discordances, as ASAT, ALP, GGT and bilirubin levels were significantly elevated, with more frequent liver metastases in patients with U ≥ 16 µg/L and the absence of a DPYD variant. The impact of cytolysis was confirmed, as ASAT levels were independently associated with increased U (p < 0.001). CONCLUSION: The frequent discordances between DPD phenotyping and genotyping approaches highlight the need to perform these two approaches to screen for all DPD deficiencies.


Assuntos
Deficiência da Di-Hidropirimidina Desidrogenase , Di-Hidrouracila Desidrogenase (NADP) , Humanos , Di-Hidrouracila Desidrogenase (NADP)/genética , Genótipo , Antimetabólitos Antineoplásicos , Capecitabina , Estudos Retrospectivos , Deficiência da Di-Hidropirimidina Desidrogenase/genética , Deficiência da Di-Hidropirimidina Desidrogenase/complicações , Deficiência da Di-Hidropirimidina Desidrogenase/diagnóstico , Fluoruracila
8.
ESMO Open ; 8(2): 101197, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36989883

RESUMO

BACKGROUND: The main cause for fluoropyrimidine-related toxicity is deficiency of the metabolizing enzyme dihydropyrimidine dehydrogenase (DPD). In 2020, the European Medicines Agency (EMA) recommended two methods for pre-treatment DPD deficiency testing in clinical practice: phenotyping using endogenous uracil concentration or genotyping for DPYD risk variant alleles. This study assessed the DPD testing implementation status in Europe before (2019) and after (2021) the release of the EMA recommendations. METHODS: The survey was conducted from 16 March 2022 to 31 July 2022. An electronic form with seven closed and three open questions was e-mailed to 251 professionals with DPD testing expertise of 34 European countries. A descriptive analysis was conducted. RESULTS: We received 79 responses (31%) from 23 countries. Following publication of the EMA recommendations, 87% and 75% of the countries reported an increase in the amount of genotype and phenotype testing, respectively. Implementation of novel local guidelines was reported by 21 responders (27%). Countries reporting reimbursement of both tests increased in 2021, and only four (18%) countries reported no coverage for any testing type. In 2019, major implementation drivers were 'retrospective assessment of fluoropyrimidine-related toxicity' (39%), and in 2021, testing was driven by 'publication of guidelines' (40%). Although the major hurdles remained the same after EMA recommendations-'lack of reimbursement' (26%; 2019 versus 15%; 2021) and 'lack of recognizing the clinical relevance by medical oncologists' (25%; 2019 versus 8%; 2021)-the percentage of specialists citing these decreased. Following EMA recommendations, 25% of responders reported no hurdles at all in the adoption of the new testing practice in the clinics. CONCLUSIONS: The EMA recommendations have supported the implementation of DPD deficiency testing in Europe. Key factors for successful implementation were test reimbursement and clear clinical guidelines. Further efforts to improve the oncologists' awareness of the clinical relevance of DPD testing in clinical practice are needed.


Assuntos
Deficiência da Di-Hidropirimidina Desidrogenase , Humanos , Deficiência da Di-Hidropirimidina Desidrogenase/diagnóstico , Deficiência da Di-Hidropirimidina Desidrogenase/genética , Deficiência da Di-Hidropirimidina Desidrogenase/tratamento farmacológico , Fluoruracila/uso terapêutico , Antimetabólitos Antineoplásicos/uso terapêutico , Estudos Retrospectivos , Di-Hidrouracila Desidrogenase (NADP)/genética , Europa (Continente)
9.
ESMO Open ; 8(1): 100782, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36791638

RESUMO

BACKGROUND: In 2020, the European Medicines Agency recommended testing patients for dihydropyrimidine dehydrogenase (DPD) deficiency before systemic treatment with fluoropyrimidines (FP). DPD activity testing identifies patients at elevated risk of severe FP-related toxicity (FP-TOX). The two most used methods for DPD testing are DPYD genotyping and DPD phenotyping (plasma uracil concentration). The primary objective of this study was to compare the overall frequency of overall grade ≥3 FP-TOX before and after the implementation of DPYD genotyping. PATIENTS AND METHODS: Two hundred thirty Danish, primarily gastrointestinal cancer patients, were DPYD-genotyped before their first dose of FP, and blood was sampled for post hoc assessment of P-uracil. The initial dose was reduced for variant carriers. Grade ≥3 FP-TOX was registered after the first three treatment cycles of FP. The frequency of toxicity was compared to a historical cohort of 492 patients with post hoc determined DPYD genotype from a biobank. RESULTS: The frequency of overall grade ≥3 FP-TOX was 27% in the DPYD genotype-guided group compared to 24% in the historical cohort. In DPYD variant carriers, DPYD genotyping reduced the frequency of FP-related hospitalization from 19% to 0%. In the control group, 4.8% of DPYD variant carriers died due to FP-TOX compared to 0% in the group receiving DPYD genotype-guided dosing of FP. In the intervention group, wild-type patients with uracil ≥16 ng/ml had a higher frequency of FP-TOX than wild-type patients with uracil <16 ng/ml (55% versus 28%). CONCLUSIONS: We found no population-level benefit of DPYD genotyping when comparing the risk of grade ≥3 FP-TOX before and after clinical implementation. We observed no deaths or FP-related hospitalizations in patients whose FP treatment was guided by a variant DPYD genotype. The use of DPD phenotyping may add valuable information in DPYD wild-type patients.


Assuntos
Deficiência da Di-Hidropirimidina Desidrogenase , Neoplasias Gastrointestinais , Humanos , Antimetabólitos Antineoplásicos/efeitos adversos , Capecitabina/efeitos adversos , Dinamarca , Deficiência da Di-Hidropirimidina Desidrogenase/induzido quimicamente , Deficiência da Di-Hidropirimidina Desidrogenase/tratamento farmacológico , Deficiência da Di-Hidropirimidina Desidrogenase/genética , Di-Hidrouracila Desidrogenase (NADP)/genética , Neoplasias Gastrointestinais/tratamento farmacológico , Genótipo , Uracila/uso terapêutico
10.
Cancer Rep (Hoboken) ; 6(2): e1704, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36806724

RESUMO

BACKGROUND: Fluoropyrimidines (FP) are among the most common class of prescribed anti-neoplastic drugs. This class has severe to moderate toxicity in around 10%-40% of those who take 5-fluorouracil (5-FU) or capecitabine for the treatment of cancer. In practice many patients with severe toxicities from FP use had dihydropyrimidine dehydrogenase (DPD) enzyme deficiency. Several studies have proposed DPD screening before treatment with 5-fluorouracil (5-FU) and capecitabine or other drugs belonging to the FP group. This study aims to assess the level of awareness and attitudes of oncology specialists in Saudi Arabia toward genetic screening for DPD prior to giving FP. This highlights the importance of health guidelines required for implementation in our health care system, as a framework to adopt testing as a regular practice in clinical care. Based on the findings in this study, guidelines have been suggested for the Middle East North Africa region. METHODS: A cross-sectional survey study was conducted during 2021 targeting oncologists and clinical pharmacists working in the oncology departments across Saudi Arabia. RESULTS: A total of 130 oncologists and pharmacists completed the questionnaire representing a response rate of 87%. Most of the respondents indicated that they prescribe FP in clinical practice, but 41% of respondents reported that they have never ordered a specific molecular test during their practice. Only 20% of respondents reported that they often screen for DPD deficiency prior to prescribing FP. Significantly higher rates of awareness of potential dihydropyrimidine dehydrogenase gene (DPYD) mutation were observed among respondents in governmental hospitals (81.1% vs. 47.4% in private hospitals), and among those with more years of practice (80.6% if 5 or more years of practice vs. 59.3% if less than 5 years of practice). Also, higher rates of observing the impact of DPD testing were present among respondents with a PharmD (35% vs. 11% for oncologists and 18% for other professions) and among those with 5 or more years of practice (24.6% vs. 7.7% among those with less than 5 years). CONCLUSION: While in some institutions there is a high level of awareness among oncology specialists in Saudi Arabia regarding the effect of the potentially serious DPD enzyme deficiency as a result of gene mutations, screening for these mutations prior to prescribing FP is not a routine practice in hospitals across the country. The findings of this study should promote personalized medicine with recognition of interpatient variability via DPD testing to manage the risks of FP prescribing more effectively in the Kingdom of Saudi Arabia.


Assuntos
Deficiência da Di-Hidropirimidina Desidrogenase , Di-Hidrouracila Desidrogenase (NADP) , Humanos , Di-Hidrouracila Desidrogenase (NADP)/genética , Capecitabina/efeitos adversos , Antimetabólitos Antineoplásicos/efeitos adversos , Arábia Saudita , Estudos Transversais , Fluoruracila/efeitos adversos , Deficiência da Di-Hidropirimidina Desidrogenase/diagnóstico , Deficiência da Di-Hidropirimidina Desidrogenase/tratamento farmacológico , Deficiência da Di-Hidropirimidina Desidrogenase/genética
11.
Eur J Cancer ; 181: 3-17, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36621118

RESUMO

Fluoropyrimidine drugs (FP) are the backbone of many chemotherapy protocols for treating solid tumours. The rate-limiting step of fluoropyrimidine catabolism is dihydropyrimidine dehydrogenase (DPD), and deficiency in DPD activity can result in severe and even fatal toxicity. In this review, we survey the evidence-based pharmacogenetics and therapeutic recommendations regarding DPYD (the gene encoding DPD) genotyping and DPD phenotyping to prevent toxicity and optimize dosing adaptation before FP administration. The French experience of mandatory DPD-deficiency screening prior to initiating FP is discussed.


Assuntos
Deficiência da Di-Hidropirimidina Desidrogenase , Humanos , Deficiência da Di-Hidropirimidina Desidrogenase/complicações , Deficiência da Di-Hidropirimidina Desidrogenase/diagnóstico , Deficiência da Di-Hidropirimidina Desidrogenase/genética , Fluoruracila , Antimetabólitos Antineoplásicos/uso terapêutico , Capecitabina , Di-Hidrouracila Desidrogenase (NADP)/genética , Di-Hidrouracila Desidrogenase (NADP)/metabolismo
12.
Pharmacogenomics ; 24(2): 93-106, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36636997

RESUMO

Fluoropyrimidines (FPs) are antineoplastic drugs widely used in the treatment of various solid tumors. Nearly 30% of patients treated with FP chemotherapy experience severe FP-related toxicity, and in some cases, toxicity can be fatal. Patients with reduced activity of DPD, the main enzyme responsible for the breakdown of FP, are at an increased risk of experiencing severe FP-related toxicity. While European regulatory agencies and clinical societies recommend pre-treatment DPD deficiency screening for patients starting treatment with FPs, this is not the case with American ones. Pharmacogenomic guidelines issued by several pharmacogenetic organizations worldwide recommend testing four DPD gene (DPYD) risk variants, but these can predict only a proportion of toxicity cases. New evidence on additional common DPYD polymorphisms, as well as identification and functional characterization of rare DPYD variants, could partially address the missing heritability of DPD deficiency and FP-related toxicity.


Assuntos
Antimetabólitos Antineoplásicos , Deficiência da Di-Hidropirimidina Desidrogenase , Di-Hidrouracila Desidrogenase (NADP) , Fluoruracila , Variantes Farmacogenômicos , Humanos , Antimetabólitos Antineoplásicos/efeitos adversos , Antimetabólitos Antineoplásicos/toxicidade , Capecitabina/efeitos adversos , Deficiência da Di-Hidropirimidina Desidrogenase/genética , Di-Hidrouracila Desidrogenase (NADP)/genética , Fluoruracila/efeitos adversos , Fluoruracila/toxicidade , Genótipo
13.
Int J Mol Sci ; 23(22)2022 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-36430399

RESUMO

Deficiency of dihydropyrimidine dehydrogenase (DPD), encoded by the DPYD gene, is associated with severe toxicity induced by the anti-cancer drug 5-Fluorouracil (5-FU). DPYD genotyping of four recommended polymorphisms is widely used to predict toxicity, yet their prediction power is limited. Increasing availability of next generation sequencing (NGS) will allow us to screen rare variants, predicting a larger fraction of DPD deficiencies. Genotype−phenotype correlations were investigated by performing DPYD exon sequencing in 94 patients assessed for DPD deficiency by the 5-FU degradation rate (5-FUDR) assay. Association of common variants with 5-FUDR was analyzed with the SNPStats software. Functional interpretation of rare variants was performed by in-silico analysis (using the HSF system and PredictSNP) and literature review. A total of 23 rare variants and 8 common variants were detected. Among common variants, a significant association was found between homozygosity for the rs72728438 (c.1974+75A>G) and decreased 5-FUDR. Haplotype analysis did not detect significant associations with 5-FUDR. Overall, in our sample cohort, NGS exon sequencing allowed us to explain 42.5% of the total DPD deficiencies. NGS sharply improves prediction of DPD deficiencies, yet a broader collection of genotype−phenotype association data is needed to enable the clinical use of sequencing data.


Assuntos
Deficiência da Di-Hidropirimidina Desidrogenase , Di-Hidrouracila Desidrogenase (NADP) , Humanos , Di-Hidrouracila Desidrogenase (NADP)/genética , Di-Hidrouracila Desidrogenase (NADP)/metabolismo , Deficiência da Di-Hidropirimidina Desidrogenase/diagnóstico , Deficiência da Di-Hidropirimidina Desidrogenase/genética , Fluoruracila/efeitos adversos , Fluoruracila/metabolismo , Floxuridina , Antimetabólitos Antineoplásicos/efeitos adversos , Antimetabólitos Antineoplásicos/metabolismo , Éxons
14.
Br J Clin Pharmacol ; 88(11): 4928-4932, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35939355

RESUMO

Measuring uracil (U) levels in plasma is a convenient surrogate to establish dihydropyrimidine dehydrogenase (DPD) status in patients scheduled with 5-fluorouracil (5-FU) or capecitabine. To what extent renal impairment could impact on U levels and thus be a confounding factor is a rising concern. Here, we report the case of a cancer patient with severe renal impairment scheduled for 5-FU-based regimen. Determination of his DPD status was complicated because of his condition and the influence of intermittent haemodialysis when monitoring U levels. The patient was initially identified as markedly DPD-deficient upon U measurement (i.e., U = 40 ng/mL), but further monitoring between and immediately after dialysis showed mild deficiency only (i.e., U = 34 and U = 19 ng/mL, respectively). Despite this discrepancy, a starting dose of 5-FU was cut by 50% upon treatment initiation. Tolerance was good and 5-FU dosing was next shifted to 25% reduction, then further shifted to normal dosing at the 5th course, with still no sign for drug-related toxicities. Further DPYD genotyping showed none of the four allelic variants usually associated with loss of DPD activity. Of note, the excellent tolerance upon standard dosing strongly suggests that this patient was actually not DPD-deficient, despite U values always above normal concentrations. This case report highlights how critical is the information regarding the renal function of patients with cancer when phenotyping DPD using U plasma as a surrogate, and that U accumulation in patients with such condition is likely to yield false-positive results.


Assuntos
Deficiência da Di-Hidropirimidina Desidrogenase , Neoplasias , Insuficiência Renal , Antimetabólitos Antineoplásicos/efeitos adversos , Capecitabina , Deficiência da Di-Hidropirimidina Desidrogenase/complicações , Deficiência da Di-Hidropirimidina Desidrogenase/diagnóstico , Deficiência da Di-Hidropirimidina Desidrogenase/genética , Di-Hidrouracila Desidrogenase (NADP)/genética , Fluoruracila/uso terapêutico , Humanos , Neoplasias/tratamento farmacológico , Insuficiência Renal/complicações , Insuficiência Renal/etiologia , Uracila/uso terapêutico
15.
Clin Colorectal Cancer ; 21(3): e189-e195, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35668003

RESUMO

BACKGROUND: Adjuvant fluoropyrimidine-based chemotherapy substantially reduces recurrence and mortality after resection of stage 3 colon cancer. While standard doses of 5-fluorouracil and capecitabine are safe for most patients, the risk of severe toxicity is increased for the approximately 6% of patients with dihydropyimidine dehydrogenase (DPD) deficiency caused by pathogenic DPYD gene variants. Pre-treatment screening for pathogenic DPYD gene variants reduces severe toxicity but has not been widely adopted in the United States. METHODS: We conducted a cost-effectiveness analysis of DPYD genotyping prior to fluoropyrimidine-based adjuvant chemotherapy for stage 3 colon cancer, covering the c.1129-5923C>G (HapB3), c.1679T>G (*13), c.1905+1G>A (*2A), and c.2846A>T gene variants. We used a Markov model with a 5-year horizon, taking a United States healthcare perspective. Simulated patients with pathogenic DPYD gene variants received reduced-dose fluoropyrimidine chemotherapy. The primary outcome was the incremental cost-effectiveness ratio (ICER) for DPYD genotyping. RESULTS: Compared with no screening for DPD deficiency, DPYD genotyping increased per-patient costs by $78 and improved survival by 0.0038 quality-adjusted life years (QALYs), leading to an ICER of $20,506/QALY. In 1-way sensitivity analyses, The ICER exceeded $50,000 per QALY when the cost of the DPYD genotyping assay was greater than $286. In probabilistic sensitivity analysis using a willingness-to-pay threshold of $50,000/QALY DPYD genotyping was preferred to no screening in 96.2% of iterations. CONCLUSION: Among patients receiving adjuvant chemotherapy for stage 3 colon cancer, screening for DPD deficiency with DPYD genotyping is a cost-effective strategy for preventing infrequent but severe and sometimes fatal toxicities of fluoropyrimidine chemotherapy.


Assuntos
Neoplasias do Colo , Deficiência da Di-Hidropirimidina Desidrogenase , Capecitabina/efeitos adversos , Quimioterapia Adjuvante , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/genética , Análise Custo-Benefício , Deficiência da Di-Hidropirimidina Desidrogenase/tratamento farmacológico , Deficiência da Di-Hidropirimidina Desidrogenase/genética , Di-Hidrouracila Desidrogenase (NADP)/genética , Fluoruracila/efeitos adversos , Genótipo , Humanos
16.
Sci Rep ; 12(1): 8535, 2022 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-35595780

RESUMO

Chemotherapy is a standard therapy for muscle-invasive bladder cancer (MIBC). However, genomic alterations associated with chemotherapy sensitivity in MIBC have not been fully explored. This study aimed to investigate the genomic landscape of MIBC in association with the response to chemotherapy and to explore the biological role of genomic alterations. Genomic alterations in MIBC were sequenced by targeted exome sequencing of 409 genes. Gene expression in MIBC tissues was analyzed by western blotting, immunohistochemistry, and RNA microarray. Cellular sensitivity to gemcitabine and gemcitabine metabolite was examined in bladder cancer cells after modulation of candidate gene. Targeted exome sequencing in 20 cases with MIBC revealed various genomic alterations including pathogenic missense mutation of DPYD gene encoding dihydropyrimidine dehydrogenase (DPD). Conversely, high DPYD and DPD expression were associated with poor response to gemcitabine-containing chemotherapy among patients with MIBC, as well as gemcitabine resistance in bladder cancer cells. DPD suppression rendered cells sensitive to gemcitabine, while DPD overexpression made cells gemcitabine-resistant through reduced activity of the cytotoxic gemcitabine metabolite difluorodeoxycytidine diphosphate. This study revealed the novel role of DPD in gemcitabine metabolism. It has been suggested that DPYD genomic alterations and DPD expression are potential predictive biomarkers in gemcitabine treatment.


Assuntos
Desoxicitidina , Deficiência da Di-Hidropirimidina Desidrogenase , Di-Hidrouracila Desidrogenase (NADP) , Neoplasias da Bexiga Urinária , Desoxicitidina/análogos & derivados , Desoxicitidina/uso terapêutico , Deficiência da Di-Hidropirimidina Desidrogenase/tratamento farmacológico , Deficiência da Di-Hidropirimidina Desidrogenase/genética , Di-Hidrouracila Desidrogenase (NADP)/genética , Genômica/métodos , Humanos , Neoplasias da Bexiga Urinária/induzido quimicamente , Neoplasias da Bexiga Urinária/tratamento farmacológico , Neoplasias da Bexiga Urinária/genética , Gencitabina
17.
Clin Pharmacol Ther ; 112(4): 791-802, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35607723

RESUMO

Fluoropyrimidines (FP; 5-fluorouracil, capecitabine, and tegafur) are a commonly prescribed class of antimetabolite chemotherapies, used for various solid organ malignancies in over 2 million patients globally per annum. Dihydropyrimidine dehydrogenase (DPD), encoded by the DPYD gene, is the critical enzyme implicated in FP metabolism. DPYD variant genotypes can result in decreased DPD production, leading to the development of severe toxicities resulting in hospitalization, intensive care admission, and even death. Management of toxicity incurs financial burden on both patients and healthcare systems alike. Upfront DPYD genotyping to identify variant carriers allows an opportunity to identify patients who are at high risk to suffer from serious toxicities and allow prospective dose adjustment of FP treatment. This approach has been shown to reduce patient morbidity, as well as improve the cost-effectiveness of managing FP treatment. Upfront DPYD genotyping has been recently endorsed by several countries in Europe and the United Kingdom. This review summarizes current knowledge about DPD deficiency and upfront DPYD genotyping, including clinical and cost-effectiveness outcomes, with the intent of supporting implementation of an upfront DPYD genotyping service with individualized dose-personalization.


Assuntos
Deficiência da Di-Hidropirimidina Desidrogenase , Antimetabólitos Antineoplásicos/efeitos adversos , Deficiência da Di-Hidropirimidina Desidrogenase/tratamento farmacológico , Deficiência da Di-Hidropirimidina Desidrogenase/genética , Di-Hidrouracila Desidrogenase (NADP)/genética , Di-Hidrouracila Desidrogenase (NADP)/metabolismo , Fluoruracila , Genótipo , Humanos , Estudos Prospectivos
18.
Clin Pharmacol Ther ; 112(1): 62-68, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35397172

RESUMO

In clinical practice, 25-30% of the patients treated with fluoropyrimidines experience severe fluoropyrimidine-related toxicity. Extensively clinically validated DPYD genotyping tests are available to identify patients at risk of severe toxicity due to decreased activity of dihydropyrimidine dehydrogenase (DPD), the rate limiting enzyme in fluoropyrimidine metabolism. In April 2020, the European Medicines Agency recommended that, as an alternative for DPYD genotype-based testing for DPD deficiency, also phenotype testing based on pretreatment plasma uracil levels is a suitable method to identify patients with DPD deficiency. Although the evidence for genotype-directed dosing of fluoropyrimidines is substantial, the level of evidence supporting plasma uracil levels to predict DPD activity in clinical practice is limited. Notwithstanding this, uracil-based phenotyping is now used in clinical practice in various countries in Europe. We aimed to determine the value of pretreatment uracil levels in predicting DPD deficiency and severe treatment-related toxicity. To this end, we determined pretreatment uracil levels in 955 patients with cancer, and assessed the correlation with DPD activity in peripheral blood mononuclear cells (PBMCs) and fluoropyrimidine-related severe toxicity. We identified substantial issues concerning the use of pretreatment uracil in clinical practice, including large between-center study differences in measured pretreatment uracil levels, most likely as a result of pre-analytical factors. Importantly, we were not able to correlate pretreatment uracil levels with DPD activity nor were uracil levels predictive of severe treatment-related toxicity. We urge that robust clinical validation should first be performed before pretreatment plasma uracil levels are used in clinical practice as part of a dosing strategy for fluoropyrimidines.


Assuntos
Deficiência da Di-Hidropirimidina Desidrogenase , Di-Hidrouracila Desidrogenase (NADP) , Uracila , Antimetabólitos Antineoplásicos , Deficiência da Di-Hidropirimidina Desidrogenase/tratamento farmacológico , Deficiência da Di-Hidropirimidina Desidrogenase/genética , Di-Hidrouracila Desidrogenase (NADP)/genética , Di-Hidrouracila Desidrogenase (NADP)/metabolismo , Humanos , Leucócitos Mononucleares/metabolismo , Estudos Prospectivos , Uracila/sangue
19.
Semin Oncol ; 49(2): 170-177, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35027218

RESUMO

BACKGROUND: Fluoropyrimidine chemotherapy is used across many tumor types and settings. The incidence of severe adverse events (SAEs) is around 20%. Mortality is 0.5%-1%. Dihydropyrimidine dehydrogenase (DPD) plays a key role in fluoropyrimidine inactivation. Key DPYD mutations are linked to a high risk of SAEs. Pretreatment DPD screening was mandated by EMA guidelines in April 2020 and widely adopted thereafter. Uncertainty remains regarding optimal dosing practice. METHODS: We retrospectively examined records of all 23 patients with DPYD mutation who started chemotherapy between April and November 2020. Our center tests for the mutations considered clinically actionable by Clinical Pharmacogenetics Implementation Consortium and uses the Gene Activity Score (GAS) to guide dose reduction. RESULTS: Most patients started on a 50% dose. One started on 100% and experienced mild diarrhea after cycle 2; DPD was tested belatedly, subsequent cycles were reduced to 50% and he remained well. Three patients receiving chemo-radiotherapy started on 76% dose; 50% was felt to be subtherapeutic. One of them had no toxicities; another had grade 2 nausea and a hospital attendance with non-neutropenic fever; the third was admitted for 6 weeks with pancolitis. Seven patients did not have toxicities above grade 1 and no hospital attendances. Five patients had further dose reductions. None had dose escalation. CONCLUSION: As our experience shows, patients with DPD deficiency are heterogeneous. Worryingly, SAEs occur despite dose reduction according to GAS. Others had minimal toxicity and may be under-dosed by GAS. There are clearly many factors at play other than the 4 DPYD variants. The DPD result must be available and inform first cycle dosing. Dose should be cautiously titrated up if tolerated; this was not done at our center due to clinician caution. Further research is needed to guide this. Patients should be reviewed frequently, counselled regarding their DPD status, and empowered to seek advice promptly when they feel unwell.


Assuntos
Antimetabólitos Antineoplásicos , Capecitabina , Deficiência da Di-Hidropirimidina Desidrogenase , Fluoruracila , Antimetabólitos Antineoplásicos/efeitos adversos , Institutos de Câncer , Capecitabina/efeitos adversos , Deficiência da Di-Hidropirimidina Desidrogenase/tratamento farmacológico , Deficiência da Di-Hidropirimidina Desidrogenase/genética , Di-Hidrouracila Desidrogenase (NADP)/genética , Fluoruracila/efeitos adversos , Humanos , Masculino , Estudos Prospectivos , Estudos Retrospectivos , Reino Unido
20.
Clin Transl Sci ; 15(5): 1104-1111, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34863048

RESUMO

Five-fluorouracil (5-FU) is a chemotherapeutic agent that is mainly metabolized by the rate-limiting enzyme dihydropyrimidine dehydrogenase (DPD). The DPD enzyme activity deficiency involves a wide range of severities. Previous studies have demonstrated the effect of a DPYD single nucleotide polymorphism on 5-FU efficacy and highlighted the importance of studying such genes for cancer treatment. Common polymorphisms of DPYD in European ancestry populations are less frequently present in Koreans. DPD is also responsible for the conversion of endogenous uracil (U) into dihydrouracil (DHU). We quantified U and DHU in plasma samples of healthy male Korean subjects, and samples were classified into two groups based on DHU/U ratio. The calculated DHU/U ratios ranged from 0.52 to 7.12, and the two groups were classified into the 10th percentile and 90th percentile for untargeted metabolomics analysis using liquid chromatography-quantitative time-of-flight-mass spectrometry. A total of 4440 compounds were detected and filtered out based on a coefficient of variation below 30%. Our results revealed that six metabolites differed significantly between the high activity group and low activity group (false discovery rate q-value < 0.05). Uridine was significantly higher in the low DPD activity group and is a precursor of U involved in pyrimidine metabolism; therefore, we speculated that DPD deficiency can influence uridine levels in plasma. Furthermore, the cutoff values for detecting DPD deficient patients from previous studies were unsuitable for Koreans. Our metabolomics approach is the first study that reported the DHU/U ratio distribution in healthy Korean subjects and identified a new biomarker of DPD deficiency.


Assuntos
Deficiência da Di-Hidropirimidina Desidrogenase , Di-Hidrouracila Desidrogenase (NADP) , Deficiência da Di-Hidropirimidina Desidrogenase/diagnóstico , Deficiência da Di-Hidropirimidina Desidrogenase/genética , Di-Hidrouracila Desidrogenase (NADP)/genética , Di-Hidrouracila Desidrogenase (NADP)/metabolismo , Fluoruracila , Humanos , Masculino , Polimorfismo de Nucleotídeo Único , Uridina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...